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CHAPTER 1

Installation

TLS can be installed conveniently using pip:

pip install transitleastsquares

If you have multiple versions of Python and pip on your machine, make sure to use pip3. Try:

pip3 install transitleastsquares

The latest version can be pulled from github:

git clone https://github.com/hippke/tls.git
cd tls
python setup.py install

If the command python does not point to Python 3 on your machine, you can try to replace the last line with
python3 setup.py install. If you don’t have git on your machine, you can find installation instructions
here.

1.1 Compatibility

TLS has been tested to work with Python 2.7, 3.5, 3.6, 3.7. It works on Python 2.7, but only in single-threaded mode.
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CHAPTER 2

Changelog

This describes changes to TLS.

The versioning scheme is: major.minor.revision

major Will be increased when the API (the interface) changes in an incompatible way. Will be docu-
mented in this changelog.

minor Will be increased when adding functionality in a backwards-compatible manner. Will be docu-
mented in this changelog.

revision Will be increased for backwards-compatible bug fixes and very minor added functionality. Will
not always be documented in this changelog.

2.1 Version 1.0.23 (12 March 2019)

Fixed A bug in the post-detection statistics which caused a delay in large dataset (e.g., Kepler K1)

2.2 Version 1.0.21 (14 February 2019)

Fixed A bug in cleaned_array which caused an error in case invalid dy values were supplied. Rel-
evant for TESS FITS files. These should now run including uncertainties.

Added New statistics: before_transit_count, in_transit_count,
after_transit_count yield the number of data points in a bin of length transit dura-
tion before, in and after the phase-folded transit.

Added New parameter show_progress_bar (bool, default: True) When set to False, no progress
bar (using tqdm) will be shown

Added Python 2 compatibility. For now, it is only single-core.
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2.3 Version 1.0.20 (11 February 2019)

Fixed A bug which erroneously interchanged power and power_raw

2.4 Version 1.0.19 (10 February 2019)

Fixed A bug in the calculation of statistics which caused TLS to stall in some cases

2.5 Version 1.0.17 (07 February 2019)

Fixed A bug in the calculation of the SNR statistic (post-fit statistics)

Changed Major code refactoring

Added Extensive test suite

Added Warnings for the user, e.g. in case inputs are dubious. Numpy warnings are now a bug (if any
left) and no longer hidden.

Added Improved command line interface (now has its own command). Added all recent new functional-
ity to the command line interface (all except custom transit shapes)

2.6 Version 1.0.16 (29 January 2019)

Fixed A bug which caused to return an empty SDE-ogram if very small uncertainties dy were provided.

Changed Switched linear interpolation code of model shapes to a numba implementation. It is 2x faster,
20ms –> 10ms which is currently irrelevant if the shape is calculated only once per light curve,
but will become relevant when the compensation for morphological light-curve distortions will be
implemented. Then, the shapes will be re-calculated many times for a range of periods. Another
advantage is that the dependency on scipy can now be removed. Scipy is still required for testing,
however.

2.7 Version 1.0.15 (27 January 2019)

Changed If no transits fits were performed during a search, a flat SDE-ogram and SDE=0 are returned,
and a warning is raised. Previous behavior was to raise an exception and quit. This can happen
if transit_depth_min is set to a large value (e.g., 1000 ppm) and the light curve is flat (e.g.,
Kepler-quality with good detrending and no transits), so that the threshold causes no transit fits to
be performed.

Changed Only useful warnings are printed to the user console. Internal processing issues (e.g., NaN
values) are now hidden.

Changed Catalog information (e.g., from the Kepler K2 EPIC catalog) which includes missing values
now returns NaN values. Previously, -- was returned. The NaN values must still be evaluated by
the user before feeding them into a TLS model.

Changed Catalog information is now entirely pulled using AstroQuery, from Vizier (Kepler K1, K2) and
MAST. Dependency to package kplr has been dropped. This increases reliability as the MAST
API was unstable in the past.
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Fixed A bug in the command-line version was fixed which caused the search to quit under certain cir-
cumstances.

2.8 Version 1.0.14. (24 January 2019)

Added Automatically run cleaned_array before performing a search

Added New return value: results.transit_depths_uncertainties

Added New parameter: use_threads

Changed period_grid limited to physically plausible values to avoid generating empty or extremely
large grids

Removed numpy.set_printoptions(threshold=numpy.nan) which fails in numpy 1.16+
(the latest version as of 24 Jan 2019)

2.9 Version 1.0 (01 January 2018)

Initial release.

2.8. Version 1.0.14. (24 January 2019) 7
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CHAPTER 3

Python Interface

This describes the Python interface to TLS.

3.1 Define data for a search

class transitleastsquares.model(t, y, dy, verbose=True)

t (array) Time series of the data (in units of days)

y (array) Flux series of the data, so that 1 is nominal flux (out of transit) and 0 is darkness. A transit may
be represented by a flux of e.g., 0.99

dy (array, optional) Measurement errors of the data

verbose (bool, optional) Whether to print important information about the TLS run. Default True.

Note: TLS works best with a constant cadence. Variations in the cadence generally have a negligible impact on
detection efficiency, but may result in incorrect transit duration estimates. Small variations, e.g. from the barycentering
of the Kepler satellite, can usually be neglected.

Note: Gaps in the data during a transit may decrease detection efficiency. The effect becomes negligible for a large
number of transits (e.g., 20), but may be relevant in case of a few (e.g., 3) transits. Then, sorting the data points in
phase space may result in an asymmetric transit shape, reducing detection efficiency when using normal (symmetric)
transit shape templates.

Note: The time series must be in units of days. This is not a chicanery, but a necessity based on the physical model
which is used to reduce the parameter space. The unit day is a logic choice as orbital periods are typically given in
days. The Kepler mission also used this unit.
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3.2 Define parameters and run search

class transitleastsquares.power(parameters)

Parameters used for the period search grid and the transit duration search grid. All parameters are optional.

R_star (float, default: 1.0) Stellar radius (in units of solar radii)

R_star_min (float, default: 0.13) Minimum stellar radius to be considered (in units of solar radii)

R_star_max (float, default: 3.5) Maximum stellar radius to be considered (in units of solar radii)

M_star (float, default: 1.0) Stellar mass (in units of solar masses).

M_star_min (float, default: 0.1) Minimum stellar mass to be considered (in units of solar masses)

M_star_max (float, default: 1.0) Maximum stellar mass to be considered (in units of solar masses)

period_min (float) Minimum trial period (in units of days). If none is given, the limit is derived from the
Roche limit

period_max (float) Maximum trial period (in units of days). Default: Half the duration of the time series

n_transits_min (int, default: 2) Minimum number of transits required. Overrules
period_max=time_span/n_transits_min

Note: A larger range of stellar radius and mass allows for a wider variety of transits to be found at the expense of
computational effort

Physical parameters to create a Mandel & Agol (2002) transit model using a subset of the batman module and syntax
(Kreidberg 2015). Available defaults are described below.

per (float) Orbital period (in units of days). Default: X.

rp (float) Planet radius (in units of stellar radii). Default: X.

a (float) Semi-major axis (in units of stellar radii). Default: X.

inc (float) Orbital inclination (in degrees). Default: 90.

b (float) Orbital impact parameter as the sky-projected distance between the centre of the stellar disc and
the centre of the planetary disc at conjunction. If set, overrules inc=degrees(arccos(b/a).
Default: 0.

ecc (float) Orbital eccentricity. Default: 0.

w (float) Argument of periapse (in degrees). Default: 90.

u (array) List of limb darkening coefficients. Default: [0.4804, 0.1867] (a G2V star in the Kepler band-
pass).

limb_dark (str) Limb darkening model (choice of nonlinear, quadratic, exponential,
logarithmic, squareroot, linear, uniform, or power2. Default: quadratic.

Available defaults for the physical parameters of the transit model. When set, the individual parameters are overruled.

transit_template (str) Choice of default, grazing, and box.

Parameters to balance detection efficiency and computational requirements:

duration_grid_step (float, default: 1.1) Grid step width between subsequent trial durations, so that
dur𝑛+1 = dur𝑛 × duration_grid_step. With the default value of 1.1, each subsequent trial du-
ration is longer by 10%

10 Chapter 3. Python Interface
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transit_depth_min (float, default: 10 ppm) Shallowest transit depth to be fitted. Transit depths down
to half the transit_depth_min can be found at reduced sensitivity. A reasonable value should be
estimated from the data to balance sensitivity and avoid fitting the noise floor. Overfitting may cause
computational requirements larger by a factor of 10. For reference, the shallowest known transit is
11.9 ppm (Kepler-37b, Barclay et al. 2013)

oversampling_factor (int, default: 3) Oversampling of the period grid to avoid that the true period falls
in between trial periods and is missed.

T0_fit_margin (float, default: 0.01) Acceptable error margin of the mid-transit time T0. Unit: fraction
of the transit duration (0.01 is 1%). For small datasets (e.g., Kepler K2; generally: <10k datapoints),
this can be set to 0 with minor speed penalty (seconds). Then, every single cadence is sampled.
In data with many cadences, however, this can take very long and can have negligible benefits. As
an example, consider a Kepler LC light curve of 60000 points, with a maximum fractional transit
duration 𝑇14/𝑃 = 0.12. The longest phase-folded transit signal to be tested is then 7200 points
long. With Kepler noise, shifting this signal point-by-point is overkill. Shifting by 1% of the transit
duration would result in shifts of 72 cadences for this specific signal.

Note: Higher oversampling_factor increases the detection efficiency at the cost of a linear increase in compu-
tational effort. Reasonable values may be 2-5 and should be tested empirically for the actual data. An upper limit can
be found when the period step is smaller than the cadence, so that the error from shifting the model by one data point
in phase dominates over the period trial shift. For a planet with a 365-day period orbiting a solar mass and radius star,
this parity is reached for oversampling_factor=9 at 30 min cadence (Kepler LC). Shorter periods have reduced
oversampling benefits, as the cadence becomes a larger fraction of the period.

Parameters to adjust the computational load and the user experience:

use_threads (int) Number of parallel threads to be used. A processor like the Intel Core i7-8700K has
6 cores and can run 12 threads in parallel using hyperthreading. Setting use_threads=12 will
cause a full load. If no parameter is given, TLS determines the number of available threads and uses
the maximum available (in this case: 12).

show_progress_bar (bool, default: True) When set to False, no progress bar (using tqdm) is shown

Note: Multi-threading (‘‘use_threads>1‘) only works with TLS running on Python 3 as of now. On Python 2, TLS
should work, but will fall back to single-core.

verbose (bool default: True) Prints various status information during search. If set to False, no status
information is shown.

3.3 Return values

The TLS spectra:

periods (array) The period grid used in the search

power (array) The power spectrum per period as defined in the TLS paper. We recommend to use this
spectrum to assess transit signals. It is the median-smoothed power_raw spectrum.

power_raw (array) The raw power spectrum (without median smoothing) as defined in the TLS paper

SR (array) Signal residue similar to the BLS SR

chi2 (array) Minimum chi-squared (𝜒2) per period

3.3. Return values 11
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chi2red (array) Minimum chi-squared per degree of freedom (𝜒2
𝜈 = 𝜒2/𝜈) per period, where 𝜈 = 𝑛−𝑚

with 𝑛 as the number of observations, and 𝑚 = 4 as the number of fitted parameters (period, T0,
transit duration, transit depth).

The TLS statistics:

SDE (float) Maximum of power

SDE_raw (float) Maximum of power_raw

chi2_min (float) Minimum of chi2

chi2red_min (float) Minimum of chi2red

Additional transit statistics based on the power spectrum:

period (float) Period of the best-fit signal

period_uncertainty (float) Uncertainty of the best-fit period (half width at half maximum)

T0 (float) Mid-transit time of the first transit within the time series

duration (float) Best-fit transit duration

depth (float) Best-fit transit depth (measured at the transit bottom)

depth_mean (tuple of floats) Transit depth measured as the mean of all intransit points. The second value
is the standard deviation of these points multiplied by the square root of the number of intransit points

depth_mean_even (tuple of floats) Mean depth and uncertainty of even transits (1, 3, . . . )

depth_mean_odd (tuple of floats) Mean depth and uncertainty of odd transits (2, 4, . . . )

rp_rs (float) Radius ratio of planet and star using the analytic equations from Heller 2019

transit_depths (array) Mean depth of each transit

transit_depths_uncertainties (array) Uncertainty (1-sigma) of the mean depth of each transit

snr (float) Signal-to-noise ratio. Definition: SNR = 𝑑
𝜎𝑜
𝑛1/2 with 𝑑 as the mean transit depth, 𝜎 as the

standard deviation of the out-of-transit points, and 𝑛 as the number of intransit points (Pont et al.
2006)

snr_per_transit (array) Signal-to-noise ratio per individual transit

snr_pink_per_transit (array) Signal-to-pink-noise ratio per individual transit as defined in Pont et al.
(2006)

odd_even_mismatch (float) Significance (in standard deviations) between odd and even transit depths.
Example: A value of 5 represents a 5𝜎 confidence that the odd and even depths have different depths

transit_times (array) The mid-transit time for each transit within the time series

per_transit_count (array) Number of data points during each unique transit

transit_count (int) The number of transits

distinct_transit_count (int) The number of transits with intransit data points

empty_transit_count (int) The number of transits with no intransit data points

FAP (float) The false alarm probability for the SDE assuming white noise. Returns NaN for FAP>0.1.

before_transit_count (int) * Number of data points in transit (phase-folded)

in_transit_count (int) Number of data points in a bin of length transit duration before transit (phase-
folded)

12 Chapter 3. Python Interface
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after_transit_count (int) Number of data points in a bin of length transit duration after transit (phase-
folded)

Time series model for visualization purpose:

model_lightcurve_time (array) Time series spanning t, but without gaps, and oversampled by a factor
of 5

model_lightcurve_model (array) Model flux value of each point in model_lightcurve_time

Phase-folded model for visualization purpose:

folded_phase (array) Phase of each data point y when folded to period so that the transit is at
folded_phase=0.5

folded_y (array) Data flux of each point

folded_dy (array) Data uncertainty of each point

model_folded_phase (array) Linear array [0..1] which can be used to plot the
model_folded_model. This is a separate array from folded_phase, because the data
may have gaps which would prevent plotting the complete model. This array here is complete.

model_folded_model (array) Model flux of each point in model_folded_phase

Note: The models are oversampled and calculated for each point in time and phase. This way, the models cover the
entire time series (phase space), including gaps. Thus, these curves are not exact representations of the models used
during the search. They are intended for visualization purposes.

3.4 Period grid

When searching for sine-like signals, e.g. using Fourier Transforms, it is optimal to uniformly sample the trial fre-
quencies. This was also suggested for BLS (Kovács et al. 2002). However, when searching for transit signals, this is
not optimal due to the transit duty cycle which changes as a function of the planetary period due to orbital mechanics.
The optimal period grid, compared to a linear grid, reduces the workload (at the same detection efficiency) by a factor
of a few. The optimal frequency sampling as a function of stellar mass and radius was derived by Ofir (2014) as

𝑁freq,optimal =

(︂
𝑓1/3
max − 𝑓

1/3
min +

𝐴

3

)︂
3

𝐴

with

𝐴 =
(2𝜋)2/3

𝜋

𝑅

(𝐺𝑀)1/3
1

𝑆 ×𝑂𝑆

where 𝑀 and 𝑅 are the stellar mass and radius, 𝐺 is the gravitational constant, 𝑆 is the time span of the dataset and
𝑂𝑆 is the oversampling parameter to ensure that the peak is not missed between frequency samples. The search edges
can be found at the Roche limit,

𝑓max =
1

2𝜋

√︃
𝐺𝑀

(3𝑅)3
; 𝑓min = 2/𝑆

period_grid(parameters)

R_star Stellar radius (in units of solar radii)

M_star Stellar mass (in units of solar masses)

3.4. Period grid 13

https://ui.adsabs.harvard.edu/#abs/2002A&A...391..369K/abstract
https://ui.adsabs.harvard.edu/#abs/2014A&A...561A.138O/abstract


TLS Documentation

time_span Duration of time series (in units of days)

period_min Minimum trial period (in units of days). Optional.

period_max Maximum trial period (in units of days). Optional.

oversampling_factor Default: 2. Optional.

Returns: a 1D array of float values representing a grid of trial periods in units of days.

Example usage:

from transitleastsquares import period_grid
periods = period_grid(R_star=1, M_star=1, time_span=400)

returns a period grid with 32172 values:

[200, 199.889, 199.779, ..., 0.601, 0.601, 0.601]

Note: TLS calls this function automatically to derive its period grid. Calling this function separately can be useful to
employ a classical BLS search, e.g., using the astroPy BLS function.

Note: To avoid generating an infinitely large period_grid, parameters are auto-enforced to the ranges 0.1 <
R_star < 10000 and 0.01 < M_star < 1000. Some combinations of mostly implausible values, such as
R_star=1 with M_star=5 yield empty period grids. If the grid size is less than 100 values, the function returns the
default grid R_star=M_star=1. Very short time series (less than a few days of duration) default to a grid size with
a span of 5 days.

3.5 Priors for stellar parameters

This function provides priors for stellar mass, radius, and limb darkening for stars observed during the Kepler K1, K2
and TESS missions. It is planned to extend this function for past and future missions such as CHEOPS and PLATO.

catalog_info(EPIC_ID or TIC_ID)

EPIC_ID (int) The EPIC catalog ID (K2, Ecliptic Plane Input Catalog)

TIC_ID (int) The TIC catalog ID (TESS Input Catalog)

KIC_ID (int) The Kepler Input Catalog ID (Kepler K1 Input Catalog)

Returns

ab (tuple of floats) Quadratic limb darkening parameters a, b

mass (float) Stellar mass (in units of solar masses)

mass_min (float) 1-sigma upper confidence interval on stellar mass (in units of solar mass)

mass_max (float) 1-sigma lower confidence interval on stellar mass (in units of solar mass)

radius (float) Stellar radius (in units of solar radii)

radius_min (float) 1-sigma upper confidence interval on stellar radius (in units of solar radii)

radius_max (float) 1-sigma lower confidence interval on stellar radius (in units of solar radii)

14 Chapter 3. Python Interface
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Note: The matching between the stellar parameter table and the limb darkening table is performed by first finding the
nearest 𝑇eff , and subsequently the nearest logg.

Note: Data sources:

K1 data are pulled from the catalog for Revised Stellar Properties of Kepler Targets (Mathur et al. 2017) with limb
darkening coefficients from Claret et al. (2012, 2013). Data are pulled from Vizier using AstroQuery and matched to
limb darkening values saved locally in a CSV file within the TLS package.

K2 data are collated from the K2 Ecliptic Plane Input Catalog (Huber et al. 2016) with limb darkening coefficients
from Claret et al. (2012, 2013). Data are pulled from Vizier using AstroQuery and matched to limb darkening values
saved locally in a CSV file within the TLS package.

TESS data are collated from the TESS Input Catalog (TIC, Stassun et al. 2018) with limb darkening coefficients from
Claret et al. (2017). TIC data are pulled from MAST and matched to limb darkening values saved locally in a CSV
file within the TLS package.

Warning: Upper and lower confidence intervals may be identical. Radius confidence interval may be identical to
the radius. Values not available in the catalog are returned as None. When feeding these values to TLS, make sure
to validate accordingly.

Example usage:

ab, R_star, R_star_min, R_star_max, M_star, M_star_min, M_star_max = catalog_
→˓info(EPIC_ID=211611158)
print('Quadratic limb darkening a, b', ab[0], ab[1])
print('Stellar radius', R_star, '+', R_star_max, '-', R_star_min)
print('Stellar mass', M_star, '+', M_star_max, '-', M_star_min)

produces these results:

Quadratic limb darkening a, b 0.4899 0.1809
Stellar radius 1.055 + 0.12 - 0.1
Stellar mass 1.267 + 0.64 - 0.286

Note: Missing catalog entries will be returned as NaN values. These have to be treated on the user side.

3.6 Transit mask

Can be used to plot in-transit points in a different color, or to cleanse the data from a transit signal before a subsequent
TLS run to search for further planets.

transit_mask(t, period, duration, T0)

t (array) Time series of the data (in units of days)

period (float) Transit period e.g. from results: period

duration (float) Transit duration e.g. from results: duration

3.6. Transit mask 15
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T0 (float) Mid-transit of first transit e.g. from results: T0

Returns

intransit (numpy array mask) A numpy array mask (of True/False values) for each data point in the time
series. True values are in-transit.

Example usage:

intransit = transit_mask(t, period, duration, T0)
print(intransit)
>>> [False False False ...]
plt.scatter(t[in_transit], y[in_transit], color='red') # in-transit points in red
plt.scatter(t[~in_transit], y[~in_transit], color='blue') # other points in blue

3.7 Data cleansing

TLS may not work correctly with corrupt data, such as arrays including values as NaN, None, infinite, or negative.
Masked numpy arrays may also be problematic, e.g., when performing a transit_mask. When in doubt, it is
recommended to clean the data from masks and non-floating point values. For this, TLS offers a convenience function:

cleaned_array(t, y, dy)

t (array) Time series of the data (in units of days)

y (array) Flux series of the data

dy (array, optional) Measurement errors of the data

Returns

Cleaned arrays, where values of type NaN, None, +-inf, and negative have been removed, as well as masks. Removed
values make the output arrays shorter.

Example usage:

from transitleastsquares import cleaned_array
dirty_array = numpy.ones(10, dtype=object)
time_array = numpy.linspace(1, 10, 10)
dy_array = numpy.ones(10, dtype=object)
dirty_array[1] = None
dirty_array[2] = numpy.inf
dirty_array[3] = -numpy.inf
dirty_array[4] = numpy.nan
dirty_array[5] = -99
print(time_array)
print(dirty_array)

>>> [ 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.]
>>> [1 None inf -inf nan -99 1 1 1 1]

t, y, dy = cleaned_array(time_array, dirty_array, dy_array)
print(t)
print(y)
>>> [ 1. 7. 8. 9. 10.]
>>> [1. 1. 1. 1. 1.]
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3.8 Data resampling (binning)

TLS run times are strongly dependent on the amount of data. Very roughly, an increase in the data volume by one
order of magnitude results in a run time increase of two orders of magnitude (see paper Figure 9).

For a first quick look, or for short cadence data, it may be adequate to down-sample (bin) the data. In general, binning
is adequate if there are many data points between two phase grid points at the critical phase sampling.

To bin the data, TLS offers a convenience function:

resample(t, y, dy, factor)

t (array) Time series of the data (in units of days)

y (array) Flux series of the data

dy (array, optional) Measurement errors of the data

factor (float, optional, default: 2.0) Binning factor

Returns

Resampled arrays of length len(t)*int(1/factor), where the flux (and optionally, dy) values are binned by
linear interpolation.

Example usage:

from transitleastsquares import resample
time_new, flux_new = resample(time, flux, factor=3.0)

Note: Values of type (NaN, None, +-inf, negative, or empty) lead to undefined behavior. It is recommended to first
use cleaned_array if needed.

3.8. Data resampling (binning) 17
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CHAPTER 4

Command line interface

This describes the command line interface to TLS. After installation, you can call it from the command line.

4.1 Usage

Syntax:

transitleastsquares [-h] [-o OUTPUT] [-c CONFIG] lightcurve

Minimum example:

transitleastsquares test_data.csv

Maximum example:

transitleastsquares test_data.csv --config=tls_config.cfg --output=results.csv

Note: In the current TLS version, custom transit shapes can not be defined with the command line interface. If you
have a use case for more complex searches using the command line interface, please open an issue on Github and I
will add it to the next version.

4.2 Config file

Syntax:

[Grid]
R_star = 1
R_star_min = 0.8

(continues on next page)
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(continued from previous page)

R_star_max = 1.2
M_star = 1
M_star_min = 0.8
M_star_max = 1.2
period_min = 0
period_max = 1e10
n_transits_min = 3

[Template]
transit_template = default

[Speed]
duration_grid_step = 1.1
transit_depth_min = 10e-6
oversampling_factor = 2
T0_fit_margin = 0.01
use_threads = 4

[File]
delimiter = ,

4.3 Output

After a successful TLS run, 2 files are generated: :statistics: lightcurve filename + _statistics.csv
:SDE-ogram: lightcurve filename + _power.csv
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CHAPTER 5

FAQ

Frequently asked questions.

5.1 Is TLS always better than BLS?

No, but almost always!

• For >99.9% of all known transiting planets, TLS recovers the transits at a higher significance than BLS, as a
transit is almost always better fit to the data than a box. This assumes limb-darkening estimates from the usual
catalogs to be used with TLS. If no limb-darkening estimates are available, TLS is better for >99% of the known
planets.

• The remaining cases are mostly grazing transits (V-shaped), for which TLS offers a dedicated template to max-
imize sensitivity (see tutorials and documentation)

• A very few real-life cases are limb-darkened transits which are distorted by noise so that they occur to be more
box-like than transit-like. On average, however, this is very rare. If you like to search for box-like transits, you
can also use TLS and choose a trapezoid-shaped template (again, see tutorials and documentation). Using TLS
over BLS to search for box-like transit makes sense, because TLS offers the optimal period grid and optimal
duration grid (assuming you have prior information on stellar radius and mass from the K2, EPIC, TESS etc.
catalog). Also, TLS searches for a true trapezoid (with steep ingress and egress), whereas BLS searches for an
(unphysical) step function.

• In terms of recovery rate for a chosen false alarm rate: From an experiment of 10k white noise injection and
retrievals, we find that for any threshold, the recovery rate of true positives (the planets) is always better for
TLS, compared to BLS. For example, the recovery rate at a false alarm threshold of 1% is better for TLS than
for BLS, and this holds for any other threshold, such as 0.1%, 0.01% etc. Setting the SDE threshold is similar
to BLS (see next section).
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5.2 False alarm probability

From an experiment with >10000 white noise-only TLS search runs, we can estimate false alarm probabilities (FAP)
as follows:

1-FAP SDE
0.9 5.7
0.95 6.1
0.99 7.0
0.999 8.3
0.9999 9.1

In noise-only data, 1% of the observed cases (1-FAP=0.99) had an SDE>7.0. If an SDE of 9.1 is observed in a data
set, the probability of this happening from noise fluctuations is 0.01%. This assumes Gaussian white noise. Real data
often has partially correlated (red) noise. Then, the FAP estimates are too optimistic, i.e., high SDE values will occur
more often than measured in the experiment. Vice versa, the SDE values per given FAP value will be higher in red
noise.

TLS returns the FAP value per SDE as results.FAP (see Python interface).

5.3 Truncation of the power spectrum

The Figure below (left panel) is taken from the paper (Figure 3) and shows (a): the 𝜒2 distribution (b): The signal
residue (c): the raw signal detection efficiency and (d): the signal detection efficiency (SDE) used by TLS, smoothed
with a walking median. This plot was made using the default parameters in TLS.

In the right panel, the only change is transit_depth_min=200*10**-6. That is, we decide not to fit any
transits shallower than 200ppm (instead of 10ppm). As a consequence, no transits were fit for many short periods
(these are smoother in phase space). The resulting spectrum contains maximum 𝜒2 values (where the signal is taken
as unity) for many periods, resulting in SDE values of zero. With a lower baseline, the actual SDE peaks may be
higher (remember: the SDE power spectrum is normalized to its standard deviation). Despite the higher peaks, the
information content is lower, as true signals may be missed, and no additional information is introduced.
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any text

5.4 How fast is TLS?

Very fast! It can search an entire unbinned Kepler K2 lightcurve (90 days, 4000 datapoints) for the best-fit limb-
darkened transit model in a few seconds on a typical laptop computer.

In a typical K2 light curve (e.g., EPIC 201367065), TLS (default configuration) performs 3× 108 light curve evalua-
tions in the 𝜒2 sense, over 8500 trial periods, each including a transit and the out-of-transit part of the light curve.

A single phase-folded light curve evaluation calculates the squared residuals of the best-fit limb-darkened model light
curve to the data points. It pulls the out-of-transit residuals from a cache (if re-usable from previous models) or
calculates and caches them. In the end, it returns the 𝜒2 of this model to the main routine. One such individual model
comparison consumes (on average) 230 ns of wall-clock time on one core of an Intel Core i5-6300U at 2.4 GHz.

The average number of in-transit points (in the phase-folded view), i.e. the transit duration in cadences, is 138 (in
this example). Considering the out-of-transit points, almost 1013 squared-residuals-calculations would be required.
Through careful evaluation of which out-of-transit points have previously been calculated and can be re-used, ~96%
of these repetitive calculations can be avoided.

In Kepler K2 light curves, on average ~53% of the total compute time is required for phase-folding and sorting. Sorting
is set to use numpy’s MergeSort algorithm which is implemented in the C language. This is slightly faster than the
more commonly used QuickSort, because phase-folded data is already partially sorted.

But: TLS is written in Python and JIT-compiled with numba. How much faster would a pure C or Fortran implemen-
tation be? Not much faster, if faster at all. The innermost numba-loop which calculates the residuals in the 𝜒2 sense
has been measured with a throughput of 12.2 GFLOPs on a single core on an Intel Core i5-6300U at 2.4 GHz. The
manufacturer spec-sheet gives a maximum of 16.9 GFLOPs per core at this clock speed, i.e. TLS pulls 72% of the
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theoretical maximum. The remaining fraction is very difficult to pull, as it includes a relevant amount of I/O in the
form of array shifts. It may be possible to shave off a few percent using hand-optimized assembly, but certainly not
more than of order 10%.

5.5 Edge effect jitter correction

TLS fully compensates for the BLS edge effect jitter effect, which we discovered and described in our paper (Hippke &
Heller 2019, appendix B). A visualization of this effect on the statistic is shown in an iPython tutorial, using synthetic
data.

The original BLS implementation did not account for transit events occurring to be divided between the first and the
last bin of the folded light curve. This was noted by Peter R. McCullough in 2002, and an updated version of BLS was
made (ee-bls.f ) to account for this edge effect. The patch is commonly realized by extending the phase array through
appending the first bin once again at the end, so that a split transit is stitched together, and present once in full length.
The disadvantage of this approach has apparently been ignored: The test statistic is affected by a small amount of
additional noise. Depending on the trial period, a transit signal (if present) is sometimes partly located in the first and
the second bin. The lower (in-transit) flux values from the first bin are appended at the end of the data, resulting in a
change of the ratio between out-of-transit and in-transit flux.

There are phase-folded periods with one, two, or more than two bins which contain the in-transit flux. This causes a
variation (over periods) of the summed noise floor, resulting in additional jitter in the test statistic. For typical Kepler
light curves, the reduction in detection efficiency is comparable to a reduction in transit depth of ~0.1-1 %. TLS
corrects this effect by subtracting the difference of the summed residuals between the patched and the non-patched
phased data. In real data, the effect is usually overpowered by noise, and was thus ignored, but is nonetheless present.

5.6 Small period trial ranges

TLS can be parametrized to search over a restricted period range using period_min and period_max. TLS will
then create an optimal period search grid in [period_min, ..., period_max]. If the range is very small,
only a few periods would be tested. This works in the least-squares (𝜒2) sense, i.e. it would detect the period with
the smallest residuals for our transit model. With only a few period trials, however, no power spectrum can be
created (sometimes called “SDE-ogram”). This is because power is normalized by its standard deviation, and a
standard deviation of just a few (noisy) points is not meaningful. The most common detection criteria is the SDE,
often required to be >9 for a signal to be considered interesting. As the SDE is located at the maximum of power,
it can not be calculated without it. Thus, a small number of period trials are problematic. A large number of periods
result in a robuster estimate of the power noise floor, and this in a robuster estimate of the height of the peak, the
SDE.

TLS solves the issue of very small period ranges by requiring at least 100 trial periods, and extends the period range to
its (large) defaults if the grid is too small based on the supplied parameters. Thus, if you set period_min=365.2
and period_max=365.3, TLS will probably default to a larger range (depending on your stellar mass, radius, and
oversampling parameter). This is displayed at the start of each TLS run:

Searching 18113 data points, 4726 periods from 0.602 to 27.867 days

You can use this information to increase your period search range accordingly.
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